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Abstract 

Often it is important to consider the expansion of a quantum state IV) in terms of 
physically meaningful basis states. For example, molecular orbitals can be expressed as 
linear combinations of atomic orbitals, or vibrational states can be expressed as super- 
positions of local or normal mode eigenstates. In such expansions, it then becomes desirable 
to determine how much "character" a quantum state has in one of these basis states. One 
way of accimplishing this task is to calculate the projected probability ofl ~) on basis state 
I J). In this paper, we consider this general quantum mechanical problem. If the basis states 
are orthonormal, then the projected probability ofl ~) on I J) is of course I(vIJ)I u. However, 
if the basis states are not orthogonal, then this result is no longer valid and one must 
develop a more general theory to calculate these projected probabilities. An earlier paper 
used one-dimensional projection operators to initiate this theory and gave closed form 
results for the case of two non-orthogonal basis states [1]. One- and many-dimensional 
projection operators, together with linear algebraic techniques, are used to extend this 
theory to the n non-orthogonal basis state case. Explicit closed form results are given for 
the two- and three-state cases, and a general algorithm is developed for the case of four 
or more basis states. Application of the theory is made to atomic populations in three- to 
six-atom molecules, and comparisons are made to the related work of Mulliken. 

1. Introduction 

Consider a normalized quantum state IV) expressed as a linear combination of 
several normalized basis states [2]: 

n 

= a l l  i ) .  
i=1 

If the basis states Ii) are orthogonal, one can interpret a~ z as the projected probability 
of ]V) on the basis stat,. [i). For non-orthogonal basis sets, however, a~ 2 cannot be 
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interpreted in this manner. Nevertheless, the notion of a "projected" probability is still 
useful as a measure of the contribution of each basis state to the overall state IV); 
therefore, we generalize the concept of a projected probability to include both ortho- 
gonal and non-orthogonal basis states. 

The method developed in this paper involves the projection operator decom- 
position of IV) into components along the basis states. The squares of these 
components are interpreted as contributions to overall probabilities. The particular 
projection operator decomposition we outline guarantees that each probability is 
between zero and one, and that the sum of all of the probabilities is unity. 

Projected probabilities can be applied to various physical phenomena. For example, 
they have often been used to calculate electronic populations in LCAO (Linear 
Combination of Atomic Orbitals) molecular orbitals [1,3]. In addition, these proba- 
bilities can be used to calculate correlation energies [4] and the normal and local mode 
character of molecular vibrations [5]. 

Section 2.1 begins the discussion of a theory of projected probabilities by focusing 
on the case in which ] V) is expressed in terms of two basis states. This theory is 
expanded in section 2.2 to include three basis states. Next, a generalization of the 
theory to the n-state case is offered in section 2.3, followed by a description in 
section 3 of a computational algorithm which can be used to implement the theoretical 
results. In section 4, the theory is applied to the problem of electronic populations, 
including several examples and comparisons to Mulliken populations. Finally, in 
section 5, we briefly discuss our results. 

2. Theory 

2.1. THE 2-STATE CASE 

Consider a normalized state IV) expressed as a linear combination of two 
normalized basis states [1] 

liP') = a111)+ a212). 

First, define the projection operators P/and their orthogonal complements Qi: 

/'1 =11)(11, P2=12)(21, 

Q l - l - h ,  Q2 - 1 - P 2 .  

Using these operators, we can expand IV) as follows (see fig. 1): 
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Fig. 1. (caption on following page). 
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Fig. 1. Projection operator decomposition for two states. The initial vector for each 
projection is shown with an arrowhead and with its tail at the origin; its parallel 
component (projection) and perpendicular component (orthogonal projection) are 
shown without arrowheads. The perpendicular component of a given projection 
becomes the initial vector for the next projection, as indicated by the labels. 
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IV) = Pll V) + Q1 [ V) 

= P I l V ) + P 2 Q I l v ) +  Q2QI I W) 

= ell ~)+ P2Qll ~)+ P1 Q2 QI [ l/t) + Q1Q2Qll iV) 

= PI lV)+P2QI lV)+P1Q2QI lV)+P2Q1Q2QIIV)+  . . . .  (1) 

since P1 + Q1 = 1 and P2 + Q2 = 1. Starting instead with the expansion IV) = P2] V) 
+ Q21 V), and then following the above pattem, we find: 

II/t) = P21 I/t) + P1 Q2I V)+P2Q1 Q21 V)+P1 Q2Q1 Q2I iV)+ . . . .  (2) 

Clearly, we could begin the decomposition by states with P~ or P2" The symmetrized 
expansion which avoids any initial bias is: 

1 FP1 (1 + Q2 + Q2Q1 + Q2Q1 Q2 + Q2Q1QzQ1 +. . . ) l  i//)+] 
IV)= 2 L P 2 ( I + Q I + Q 1 Q 2 + Q I Q 2 Q I + Q 1 Q 2 Q 1 Q 2 + . . . ) [ V  ) • 

(3) 

From the expansion in eq. (3), we define the probabilities (~)12 
terms of "probability operators" (P~)~2 and (P2)12: 

(P1)12 = (V[ (/61)121V), 

(P2) l  2 ~ (VI(fiz)IEIV), 

and (~)12 in 

(4) 

where the subscripts inside the parentheses indicate the basis state for which we are 
calculating the probability, and the subscripts outside the parentheses indicate the entire 
set of basis states. Although this notation is cumbersome for the 2-state case, it is 
necessary for the general problem. 

All that remains is to define the probability operators. Notice that eq. (3) 
partitions IV) into the I1) direction and in the 12) direction. That is, 

1 c q l l )  = ~ [PI(1 + Q2 +QEQ1 +.. .) l  i/t)], 

1 a212)= ~ - [ P z ( I + Q I + Q 1 Q 2 + . . . ) I V )  I .  

Thus, each term in eq. (3) which begins with P~ is a projection of I V) onto I 1 ). Hence, 
each of these terms can be interpreted as a probability amplitude on I 1). The sum of 
the absolute squares of these terms is then the total projected probability on [1). By 
this reasoning, and by parallel reasoning for 12), we define the probability operators: 
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^ 1 
(P1)12 = ~-[PI + Q 2 P 1 Q 2 + Q I Q 2 P 1 Q 2 Q 1  +Q2QIQ2P1Q2Q1Q2+...], 

^ 1 
(P2)12 ---- g[Px+Q1PzQ1 +Q2QIP2Q1Qz+Q1Q2Q1P2Q1QzQ1 + . . . ] .  (5) 

It can easily be verified that the sum of the absolute squares of the terms in each line 
of eq. (1) is unity. Similarly, the sum of the squares of the terms in eq. (2) must be 
unity. Therefore, the symmetrized probability operators in eq. (5) must also sum to 
unity, as must the probabilities defined in eq. (4). 

The infinite sums in eq. (5) can be recast by noting the relations: 

Q2Q1QEI 1) = szlzQzl 1), 

QI QEQ1 [2) = $22Ql12), 

which imply that altemate terms in eq. (5) beginning with the second term form a 
convergent geometric series, as do alternate terms beginning with the third term. In this 
way, eq. (5) simplifies to the finite expressions: 

(fi )12 = (1 +$22P2 1+S22 (P1P2 +P2P1)] 
2 

(fi2)12 = (1-$42)-1[P2 +$22p1 1+8222 (P1Pz + Pe P1)] " (6) 

From these expressions, we determine the probabilities [6]: 

(P1)I 2 ----" (V[ (t61)121 IV) - 
a2 + a2S2 

12 
1 + $212 

+ ~1 ~2S12 , 

(P2)12 ----" (VI(/~z)121 V) - 
2 2  a22+ O~1S 12 

1 + $22 
+ al a2S12. (7) 

Note that for S~2 
/? = a?. 

l 1 

= 0, the expressions in eq. (7) reduce to the usual expressions: 

2.2. THE 3-STATE CASE 

We now consider the 3-state expansion of the normalized quantum state IV): 

IV) = a l l  1)+ a212)+ 0~313). 
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The advantage of the 2-state projection operator decomposition in eq. (3) is that, once 
the initial projection is chosen, the alternating pattern o f  future projections is well 
determined. If we impose a similar projection operator decomposition on the 3-state 
case, a similar well-determined pattern does not emerge, since at each step there are 
two possible vectors for the next projection. To overcome this problem, we expand IV) 
by alternately projecting onto one of the basis vectors and onto the plane formed by 
the remaining two basis vectors; in effect, this creates a new 2-state case, where one 
"state" is a vector and the other "state" is a plane. 

Geometric intuition suggests that to project onto a plane, we project onto any 
two orthonormal vectors in this plane, and then add vectorially the resulting projec- 
tions. For example, in order to project onto the plane spanned by ]2) and 13), we can 
project onto the vectors 12) and (1 - .~2 ~-1/20 13). The elementary projection opera- 

~ 2 3 :  ~ ' 2  ~ 

tors corresponding to each of these vectors are P2 and (1 - $23)-1Q2 t'3 Q2; hence, the 
overall plane projection operators are: 

Q2 P3 Q2 P2 +P3 - P2 P3 - P3 P2 
P23 - - P 2 +  

1-S223 1-$223 

Q 2 3  - 1-/°23. 

The following properties are easily verified from the definitions given above: 

Pz 3 P2 = P2 P2 3 = P2, 

P23P3 =/%Pz3 =/3 • 

Geometrically, these properties imply that the projection of a vector Ii)  onto a plane 
in which it lies is the vector Ii) itself. The obvious corollaries are: 

Q23P2 = P2Q23 = 0, 

Q23P3 = P3Q23 = 0. 

In addition, from the definition of Q23' we can derive the expression: 

1 - $ 2 2 - S ~ 3 - $ 2 3 + 2 S 1 2 S 1 3 S 2 3  detS123 (8) 
( I [ Q x 3 [ 1 ) =  1 - S ~ 3  - detS23 ' 

where the S matrices are the overlap matrices for the subscripted basis states. We show 
in appendix 1 that 0 < (11Q231 1) _< 1. 
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We are now positioned to treat the 3-state case. We choose one of the three basis 
vectors, say I 1 ), and altemately project onto that basis vector and onto the plane formed 
by the remaining two basis vectors: 

l I/t) = ,°11 l/t) + Q11 ~)  

= PII~)+Pz3QIIilt)+ Q23 QI I ~/0 

= PlIItt)+P23QII~)+P1 Q23 Q111 g) + . . . .  

As in the 2-state case, we use the symmetrized expansion of I~): 

1 [P1 (1 + Q23 + Q23 Q1 + Q23 Q1 Q23 + ..)[ i/t) +] 
It/t) = ~[P23(l+QI +Q1Q23+Q1Q23Ql +.I.)Illt) . (9) 

Despite this symmetrization, eq. (9) still biases the isolated basis state 11) over the 
others. This bias will be eliminated by an additional symmetrization described later in 
this section. 

The expansion in eq. (9) is the exact expansion used in the 2-state case 
(cf. eq. (3)), with/'23 replacing/'2, and Q23 replacing Q2; thus, we define probability 
operators as in the 2-state case. Since the I 1) component of I ~) has been isolated in 
eq. (9), we define: 

(P11)123 
1 

= 2 [P1 +Q23P1Q23+Q1Q23P1Qz3Q1 +Q23Q1Q23P1Q23Q1Q23+...~, (10) 

as in eq. (5). The second subscript inside parentheses of the probability operator 
indicates the isolated basis state in the expansion of I~). As before, the first subscript 
indicates which state's probability we are calculating, and the subscripts outside the 
parentheses indicate the complete set of basis states. 

Given eq. (9), we cannot so simply write down (/;21)123 and (/;31)123' since the 
12) and 13) components of I~) have not been separated: instead, there are terms that 
begin with P23 which contain both 12) and 13) components. However, each term that 
begins with P23 is a vector in the two-dimensional space sparmed by 12) and 13) and 
can be expanded using the standard 2-state projection operator decompositon (cf. 
eq. (3)): 

1 [P2 (1 + Q3 + Q3 Q2 + Q3 Q2 Q3 +...)P231 ~)  +] 
P2311/t)= -~LP3(I+Q2+Q2Q3+Q2Q3Q2+ )P2311/t) .]' 

1 [Pz (1 + 03 + Q3 Qz + Q3 Qz Q3 +...)P23 Qll l/t) +] 
Pz3 a l  I I/t) = ~ P3 (1 + 02 + 02 03 + 02 03 02 +...)P13 Qll i/t) J '  

, . . 
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From each of these expansions, we extract a contribution to the probability operator 

Contribution from P23[ V): 

l [ P2 3 P2 P2 3 + P2 3 Q 3 P2 Q 3 P2 3 + P2 3 Q 2 Q 3 P2 Q 3 Q 2 P2 3 + . . . ] 

1 
= ~P23EPz +Q3P2Q3 +QEQ3PzQ3Q2 +...~P23 

= t'23 ( P 2 ) 2 3  t '23 • 

Contribution from P23Qll V): 

12 [ Q1P23P2P23Q1 + Q1P23Q3P2Q3P23Q1 + Q1P23Q2Q3P2Q3Q2P23Q1 + ""] 

= Q1P23(P2)23P23QI • 

Collecting all such contributions yields: 

(/~21)123 

1 [P23(/~2)23P23 +QIP23(P2)23P23Q1 +Q23QIP23(132)23P23QIQ23 +]. (11) 
=- 2 L Q1Q23QlP2~(P2)23e23Q1Qz3Q1 +. . .  _J 

By symmetry, we can immediately write (/;3~)123: 

11P23(P3)z3P23+Q1Pz3(I~3)23Pz3Q1 +Qz3Q1Pz3(t;H)23P23Q1QE3+l. (12) 
2 [_ Q1Q23QIp23(p3)z3pz3Q1Q23Q1 +. . .  J 

Next, we simplify the expressions for the probability operators (eqs. (10)-(12)), 
beginning with the expression for (Pll)lz~ in eq. (19). We observe that: 

Qz3Q1 Q2311) = Q23(1-P1)Q2311) 

= [1-(11QE311)]Q23[ 1) 

= (Xl)123Q23[ 1), (13) 
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where (X1)123 - 1 - (det S~23/det S23 ) from eq. (8). Applying Q1 to the left-hand side 
of this equation yields: 

Q1 Q23 Q1 Q2311) = (x 1)123 Q1 Q2311) • (14) 

Equations (13) and (14) imply: 

2 
Q23 Q1 023P1 023 Q1 Q23 = (x1)123 Q23P1 023, 

Q1 Q23Q1 Q23P1 Q23Q1 02301 = (x1)22301 Q23P1 Q23Q1 • 

Therefore, in the expression for (/;11)~23 in eq. (10), altemate terms beginning with the 
second term form a geometric series with geometric ratio (XI)~23; similarly, alternate 
terms beginning with the third term form a geometric series with the same 
ratio. In addition, since 0 < (1 10231 1)_< 1 (see appendix 1), we are guaranteed that 
0 < (Xa)~z23 < 1, and the convergence of the geometric series is assured: 

^ 1 V Q23 P1 Q23 Q1 Q23 el Q23 QI 
(Pll)123 = ~ [el + 1_(Xl)223 + 1_(x1)223 (15) 

We use a similar strategy to simplify the expression for (/~21)123 in eq. (11). Note 
that since P23 P2 = P2 and P23 P3 = P3, and since (P2)23 is given as follows (cf. eq. (6)): 

(/;2)23 = (1-S~3)-1[p2 + S~3P3 1 +$2  3 (P3P2 +P2P3) 1 
2 J 

we can make the simplification: 

P23 (/;2)23 = (/;2)23P23 = (/52)23. (16) 

Then, eq. (11) reduces to: 

^ 

( P 2 1 ) 1 2 3  = 1 [(/;2)23 +Q1 (/;2)23 Q1 + Q23Q1 (/;2)23 Q1 Q23 

+ Q1 Q23 Q1 (/;2)23 Q1 Q23 Q1 +. . .  ]. (17) 

We observe that: 
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Q23 Q1 ([32)23 Ql Q23 = Q23 (1 - P1 )(/;2)23 (1 -- PI )Q23 

= Q23 P1 (/;2)23 P1 Q23 + Q23 ([2)23 Q23 

- Q23 (t62)23 P1 Q23 - Q23 PI (/;2)z3 Q23 

= Q23 P1 (/62)23 P1 Q23, (18) 

since Q23(/~2)23 = (/~2)23Q23 = 0 (cf. eq. (16)). Therefore, eq. (17) can be rewritten as: 

(/621)123 = 1 ^ ^ 
[(P2 )23 + Q1 (/;2)23 Q1 + Q23 el (e2)23 el Q23 

+ Q1Q23P1 (/;2)23 el Q23 Q1 + ...]. 

Applying eqs. (13) and (14) to this series, we see that alternate terms beginning with 
the third term, and alternate terms beginning with the fourth term, form two convergent 

2 geometric series with geometric ratio (X1)123, leading to the expression: 

1 E (/;21)123 = "~ (/32)23 +01(/32)2301 

+ Q23Pl(P2)23PIQ23 Q1Qz3Pl(P2)23P1Qz3Q1 . (19) 
1 - (X 1 )223 + 1 -- (X 1 )223 

By symmetry, 

1 E (/631)123 = "~ (/;3)23 +Ql(/63)23Q1 

+ Q23Pl(/;3)23P1Q23 Q23Pl(/;3)23P1Q23 + 
1 - (X 1 )223  1 -- ( X  1 )223  

(20) 

As noted earlier, in order to eliminate the bias created by choosing an isolated 
basis vector, we must symmetrize our expansion of It/0: 
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1 IV) = [IV)+ IV)+ IV)] 

1 [P1(1+Q23 + 

Le23 (1 + Q1 + 

1 1 [P2(1 + Q13 + 
= ~ 2 L P 1 3 ( l + Q 2 +  

1 EP3 (1+ Q12 + 
1_P12 (1 + 03 + 

Q23 Q1 + Q23 QI Q23 + . . . )  I V) +] " 

Q1Q23 +Q1Q23Q1 +...)1 V) J+ 

Q13 Q2 + 013 Q2013 + . . . )1  It/)+] 

02013+0201302+...)JV) J+ 

01203 + 01203 012 + . . . ) [  l/t)+'] 

Q3012 + 03012Q3 + . . . ) l  I//) J 

(21) 

By symmetry, we can write expressions for (/{2)123 and (fi13)~23 from eqs. (19) 
and (20) and then evaluate (P~)lz3' the operator for the projected probability on I1): 

with parallel results for (P2)123 and (/~)123" 
A direct implementation of eqs. (15), (19), and (20) to calculate 3-state proba- 

bilities, while straightforward, is significantly more complicated than in the 2-state case 
and is detailed in appendix 2. 

2.3. THE GENERAL n-STATE CASE 

To derive the projected probabilities of IV) on n > 3 basis states, we must 
generalize the definition of a plane projection operator. An n-dimensional hyperplane 
projection operator gives the geometric projection onto the vector space spanned by 
n independent vectors. The definition of a hyperplane projection operator comes directly 
from this geometric interpretation. Given an orthonormal basis for an n-dimensional 
vector space, any vector is equal to the vector sum of its projections onto all 
of the orthonormal basis vectors. Therefore, the hyperplane projection operator is 
defined as the sum of the elementary projection operators of an orthonormal basis 
{I 1'), 12') . . . . .  In')} for the space spanned by I1) . . . . .  I n) [7]: 

/'1...,, = I1')(1'1 + 12')(2'1 +.. .  + In')(n'l • (22) 

We can easily verify that P1...n is well defined, i.e. it is independent of the choice 
of orlhonormal basis (see appendix 1). Next, the orthogonal complement of 
P1...n is defined by Q 1 . . . n -  1 - P ~ . . . .  These hyperplane projection operators 
P1. . . ,  and Q1.. . ,  obey the same essential algebra as the elementary projection operators 

and 0,.. 



R.S. Manning, N. De Leon, Theory of projected probabilities 335 

It can be shown (see appendix 1) that given any vector I~), which may or may 
not lie in the space spanned by {I 1), 12) . . . . .  I n)}, we have: 

<¢1 Ql...n I 0) = detS 1...,,¢, (23) 
detS 1...n 

where the S matrices are the overlap matrices of the subscripted states. We find, in 
addition, that if 14) is normalized, then 0 < (q~ [Q1 . . .n]~) < 1. 

The hyperplane projection operator allows the derivation of the n-state proba- 
bility operator to be essentially the same as the 3-state derivation. We choose one of 
the n basis vectors, say [j), to isolate for an initial projection, and then form the 
hyperplane projection operators P1 4-~/.* ~ ... .  and Q~...i_ ~a+ x .. . .  . (For simplicity of 
notation, abbreviate these operator" to PJ and Qi ). Then, we expand [V) using these 
operators (cf. eq. (9)): 

1 [ P j ( I + Q ) + Q J Q j + Q J Q 4 Q J + . . . ) I V ) + -  
IV)= 2 LPJ( I + Q j + Q 4 Q j + Q j Q j Q 4  + . . . ) I V )  

(24) 

From the expansion in eq. (24), we define: 

1 Qj 
- + , + eje; oJej + . . . ] ,  (25) 

as in eq. (10). Similarly, we define (/;/)1 . . . ,  for i ;~j as in the 3-state case, dividing 
each of the P~ terms in eq. (24) into components in the [ 1 ) . . . . .  IJ - 1), IJ + 1) . . . . .  I n) 
directions. Each of these P~ terms is a vector in an (n - 1)-dimensional vector space, 
and we expand it into ( n -  2)-dimensional terms and 1-dimensional terms by the 
(n - 1)-dimensional generalization of the expansion in eq. (21). Within this expansion, 
we expand each (n - 2)-dimensional term by the (n - 2)-dimensional generalization 
of eq. (21). Finally, after n - 1 such expansions, each original PJ term is written as a 
fully symmetrized expansion in the directions of the n - 1 basis vectors. Clearly, this 
expansion will be very complicated, and can not be easily written for large n. However, 
the expansion can still be used to define probability operators. 

Consider any vector I Z) in the space spanned by I 1 ) . . . . .  I J -  1 ), I J + 1 ) . . . . .  ] n). 
Expand I Z) as described in the previous paragraph, and consider the sum of 
the absolute squares of all terms in this expansion that begin with P (i.e. that 
are projections onto the basis vector Ii)). By definition, this sum must be (P/)I...~- ~,/÷ ~ .. . .  
(which we abbreviate to (P.)i),  since this expansion is the standard fully symmetrized 
projection operator expansion. Note ~a t  in the 3-state case, this same simplification 
occurred, introducing the operators (P2)23 and ~(P3)23" 

We define a contribution of P~[ V) to (P7)~ . . . .  by considering the sum of  the 
absolute squares of  its expansion terms which begin with P.  This sum is identical to 
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the sum of absolute squares obtained from the expansion o f l z ) i n  the previous 
p~agraph, except that each square begins and ends with PJ. Thus, the contribution to 
(P..). is PJ(P.)J PJ. Similarly, the contribution of eJa~l~) is aj PJ(~)~ P~aj, since 
ea'~h~ai~olute sq'uare begins with Qi Pj and ends with P~Qj. This leads to the overall 
expression (cf. eq. (11)): 

1 (/~/j)l...n = "~ [ PJ(/] )JPJ + Q j PJ( Pi )J PJ Qj + QJ Qj PJ (~ )JPJ QjQJ + ] 

aj aJOj PJ(Pi)JPJQj QJQj + aJaj QJQj eJ(Pi )JPJQj QJQj aJ +." J ' 

i # j. (26)  

Equations (25) and (26) give definitions for n-state probability operators as 
infinite sums and, as in the 2-state and 3-state cases, we use the properties of hyper- 
plane projection operators to reduce these infinite sums to finite sums. We observe first 
that: 

QJQj Q J[ j) = Q J( 1 - Pj )Q J[ j) 

= [1-<sl  c;ij>] us> 

= (Xj)I_.nQJIj), (27) 

where (X.)I , 
notation ~ " ~  

- 1 - (detS 1 . . . .  /det S~ . . . .  ) from eq. (23), adopting the shorthand 
for the matrix S~..4-1,i+ ~ . . . .  . This gives the relations: 

QJQjQJ~QJQjQJ= (Xj)~...nQJ~Q j, 

Qj QJQ) QJP) QJQj QJQj = (x) )~...n Qj QJPj QJQj . 

Hence, altemate terms in eq. (25) beginning with the second term, and alternate 
terms beginning with the third term, form two convergent geometric series (since 

2 (Xj)I... n < 1 from appendix 1), giving the expression: 

1[ Q)PJQ) QJQ)PJQ)QJ ] (28) 
1 ( X j ) ~ . . .  n + 1 ( X j  2 " 

- -  - -  ) l . . . n  

We simplify eq. (26) in a similar manner. First, we apply the properties of 
appendix 1 and some operator algebra to eqs. (25) and (26) to f'md: 

^ ^ 

P1 ...n (P/))1 ,..n P1..., = (P/j)l...n Vi, j, 
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which implies 

P1...n (Pi )I...nP1...n = (f'i h. . . .  V i. 

This result is not surprising since we expect (/])1..., ,  to be constructed of only 
the operators P1 . . . . .  P so that operating Px ...,, on (/~)1 ...,, should have no 
effect. Then, we conclude the parallel (n - 1)-state result: 

PJ(l;i )JPJ = (l;i )J, (29) 

since we could use the same logic with n - 1 states. Therefore, we can rewrite eq. (26) 
as: 

1 [(*,)J + ] 
(/3/i)1...,, = ~ LOjOjQj(pi)jQjOJOj + QjQjQjQj(pi)jQjQjQjQ j +...  , 

i ~ j. (30) 

As in eq. (18), we find: 

¢oj( )Joj¢ = ¢Pj( )J%o j, 

which leads to the simplification: 

1 
)i.... 2 

- (f'i)J + Qj (19i)Qj + QJPj (Pi)JPj QJ + ] 

Qj QJPj (t;i)JPj QJQj + QJQj QJPj (1~i)JPj QJQj QJ +... J ' 

i ¢ j .  (31) 

Using eq. (27), we see that altemate terms of eq. (31) beginning with the third term, 
and alternate terms beginning with the fourth term, form two convergent geometric 
series, so we write the final expression: 

1 [ QJPj (Pi)JPj QJ 
(P'7)1""n= 2 L(Pi)J+QJ(Pi)JQJ+ l-(XJ)~'"n + 

Qj QJPj (l~i)JQJQj ] 
J' 

i ¢ j. (32) 

Finally, as in the 3-state case, in order to symmetrize with respect to the isolated 

basis vector, we write the full probability operator as: 
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n 

(/~) = _1 ~ (/~ij)l...n, (33) 
1,,.n n j=  1 

and determine the probabilities by the equation: 

( P i ) l . . . n  = (1//'l ( ~ ' ) l . . . n l  1//). ( 3 4 )  

The actual computation of eq. (34) is described in section 3. 

3. Computational algorithm for n-state probabilities 

The derivation of n-state probability operators (section 2.3) is equivalent to the 
3-state derivation (section 2.2) with a change of notation. However, the approach to 
calculating probabilities from these operators must be different. The expression for the 
3-state probability operator in eq. (19) includes 2-state probability operators, and since 
eq. (6) provides a simple closed form for 2-state probability operators, we can calculate 
a closed form for the 3-state probabilities (see appendix 2). The expression for the n- 
state probability operator in eq. (32) includes (n - 1)-state probability operators. However, 
we do not have a simple closed form for the (n - 1)-state probability operator, and the 
complexity of the 3-state probability formula in appendix 2 suggests that no simple 
closed form exists for probability operators, and hence for probabilities, for n > 3. 
Fortunately, we can still calculate probabilities numerically, because the hyperplane 
projection operator formalism lends itself to a manageable computational algorithm. 

Using the relations I = 2/= a/I  l), we rewrite eq. (34) as: 

n n 

(Pi)l...n = ~,, ~,, atam(ll(t~i)l...nlm). (35) 
/=1 m = l  

Inserting the relation given by eq. (33) gives: 

1 ~ ~ ~ atam(ll(~'j)l...nlm). (Pi)l...n = n j=l t=l m=l (36) 

Hence, to calculate (~ ) l . . . n ,  it is sufficient to calculate (ll(fiij)l . . . h im) fo r  all 
j , l ,m<n. 

Note the similarity of the n-state probability operator (/~j)~ ...,, in eq. (28) to the 
3-state probability operator(Pj)~z 3 in eq. (15). Likewise, note the similarity of the n- 
state probability operator (Pj)I ...,, in eq. (32)^to the 3-state probability operator (Pj)~23 
in eq. (19). Therefore, we can calculate (l I(P:/)I ... ,,I m) exactly as in the 3-state case 
(see appendix 2). The results of these calculations are shown in table 2. The terms in 
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Table 1 

Values of  (116~.)1 m) for the 3-state c a s e  
- I  1 

(ll (Pjj)123 1 m) (ll ([Jij)123 1 m) ,  i;~j 

Sjl Sjm 
l* j ,  m * j  1 +(Xj)123 

Sjn, 
1 =j, m ;~j 2 

t;~j, m =j S~ 
2 

1 
l =j, m =j 1 + (Xj) 123 

Sjm S jr Sjm 
(/l(/~/)ikl m) - _~L (jl(/~i)ikl m) - - ~  (1 [(/~i)/kl j ) +  1 +(Xj hz3 (Jl (~i)ik l J) 

½ (Jl(/~,);kl m) 

(ll(Pi)ikl j )  i 

1 
(Jl J> 1 + Cxj. h23 t,-~ J~kt 

Table 2 

Values of (l I(/~.)lm) for the n-state c a s e  
- i t  

(tl (~i)~ .... I m) (tl (/5/,/)1 .... Im) ,  i c j  

Sja Sjm Sjm S jr Sjm 
l c j ,  m c j  1 +(Xj)Ln ( l l (~ i ) J lm) -  ~-- ( J l (~ i ) J lm) -  --2 - - ( l l ( ~ i ) j l j ) +  1 +(Xj)L..n 

1 = j ,  m c j  Sp~ 1 T ~ (Jl(P/')Jlm) 

l c j ,  m =j S_~ 1 2 ~ (ll(P")JlJ) 

1 1 
l=j,  m = j  | +(Xj)l .... 1 +(Xj)l .... (J l (# i )J lJ)  

(Jl (,6;)i I J) 

the left column of  table 2 are easily computable, but in order to compute the terms in 
the right column, we introduce a recursive algorithm, since we do not have a closed 
form expression for the (n - 1)-dimensional probability operators involved. 

Consider some j ¢: i. Express I J)  as follows: 

IJ) = f i l l  l ) +  ... + flj-1 [ J -  1 )+  flj+l l j +  1 )+  ... + flnl n>+ IR), 

where IR) is orthogonal to I 1) . . . . .  IJ - 1), IJ + 1) . . . . .  In). This is equivalent to the 
matrix equation: 
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Ij) = [ l l )  . . . . .  I j -  1) , l j+  1) . . . . .  In)] 

fl l  

/3j+l 

. fin 

+ I R ) .  

Operating on the left by the column vector [I 1) . . . . .  IJ - 1), IJ + 1 ) . . . . .  n ) ]  t gives: 

S lj /31 

S j -  I , j  . /3j-1 
= 

S ,, j /3,, 

since IR) is orthogonal to I1) . . . . .  IJ - 1), IJ + 1) . . . . .  In).  Hence, we can solve for 
the/3  coefficients by inverting the matrix SJ~ . . . , "  Given these coefficients, we write: 

( l l (~)Jl j )  = ( l l (~)J lR)+ ~ flk<ll(e,.)Jl k), 
k¢j  

for l c j, 

Ul(~i)Jlm)= (R I(~)Jlm)+ ~ flk<kl(~)Jlm), 
k cj 

for m ¢ j. 

UI (/;/)Jlj) = (R I(~)~1 R) + ~ /3k<kl(~)~l  R) 
k ;~j 

kc j  k ~ j  k2~j 

Since (/~)s contains only the operators P1 . . . . .  e j - l ' e j + l  . . . . .  P ,  we have (/~)qR) 
= 0. This leads to the equations: 
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</l(/~/)Jl j> = ~ / ~ ,  (/I (~)Jl  k>, for l ~ j ,  
k t j  

<jl(Pi)Jlm) = ~ flk(kl(Pi)Jlm), for m ~:j,  
I~ ~j 

( / l ( ~ ) J l J )  = ~ ~ flk, f lk2(k~l(~)Jlk2) .  (37) 
kl ~j k2~j 

Given the values of  (I m) for all i, l, m ~ {1 . . . . . .  j - 1 , j  + 1 . . . . .  n}, we 
can calculate all of  the expressions in eq. (37), from which we can calculate all of the 
terms ( / l (P j )~ . . .n lm)  in table 2, ~ d  thereby find (/l(fi/) 1 . . . , , Im) for all i, l ,m <_ n. 
Thus, given the values for (/ l(P/)/Im) for all j < n  and i,l, m e  {1 . . . . .  j -  1, 
j + 1, . . . .  n} (a set of (n - 1)-dimensional problems), we can calculate the values for 
(/I(P.)~ . . . h im)  for all i, l, m < n (an n-dimensional problem). 

Let N be the set {1 . . . . .  n} and M some subset of  N. Then, by the same 
reasoning as above, given the values for ( l l (P/)u_~lm) for all j e M and 
i, l, m ~ M - j, we can calculate the values for (l I(P/) M I m)  for all i, l, m ~ M. 

This establishes a recursive algorithm for calculating an n-state probability. Set 
up an array P(istat~,/subset' ibra' iket ) in which the indices ist~t ~, ibr a, and ike t range from 
1 to n, and the index/subset ranges over some ordering of the 2n - 1 nonempty subsets 
of the set { 1 . . . . .  n}. A convenient ordering comes from the binary representation of 
each subset in which the included basis states are designated by a one and the excluded 
basis states are designated by a zero (for example, the subset { 1,4, 5} of the set 
{1, 2, 3, 4, 5, 6} is represented by 100110 = 38 = 26-1 + 26-4 + 26-5). We proceed to 
calculate the entries of  the P array so that: 

P(i, isubset, l ,m) = (/I (/;/)M Im), 

where M is the subset corresponding to the index /subset" 
We begin with the null P array and proceed to calculate it as follows. For each 

1-element subset M = {i} ~ N and any l, m < n, we set P(i, 2" - i ,  l, m) = SiISim, since 
~ ) u  = P/. Notice that we calculate values of the P array for which the bra or the ket 
are not in the set M, since they will be needed in the next step of  the recursion. 

Then, for each 2-element subset M = {i~, i2}, we evaluate P(i,  2 "-'~ + 2 n-j2, 
l, m) for all sets {i e M, l ~ M, m ~ M} by referring to table 2, summing over both 
values o f j  in M, and dividing by 2. Note that the values for ( / l ~ ) i l  m)  are in the P 
array since we have already calculated all of the 1-element subset entries. Next, using 
eq. (37), we calculate P(i, 2n- i~+2"-i2,  l ,m) for the sets { i~  M, l ~  M, m ~  M}, 
{ i ~ M, l ~ M, m ~ M }, and { i ~ M, l ~ M, rn ~ M, l = m }. Note that these are exactly 
the entries we will need from table 2 when we proceed to 3-element subsets. 
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Continuing in this manner through subsets of increasing size, we finally compute 
the values of P(i, 2 n - 1, l, m) = (l I(P/) 1 ...hi m) for all sets {i, l, m}. Then, by eq. (35), 
we calculate the final probability (P.)I ... n" 

A program for this algorithm was written in FORTRAN 77 and was used for the 
calculations described in section 4. A calculation for seven basis states required 
approximately one CPU second on a Sun workstation [8]. 

4. Application - electronic populations of  several molecules 

In 1955, Mulliken [3] developed a method to calculate probabilities on non- 
orthogonal basis sets, with a particular application to electronic populations calculated 
from LCAO (Linear Combination of Atomic Orbitals) molecular orbitals. Mulliken's 
method consisted essentially of calculating overlap populations S~y a ~. for every pair 
of basis states I i) and I J), and assigning half of this overlap population to each of the 
two involved states. Using this method, however, MuUiken occasionally calculated 
probabilities to be slightly less than zero or greater than one: for example, Mulliken 
found a population of -0.0005 on H 2 in the l a  x molecular orbital for H20 [3]. 

Other researchers have refined MuUiken's method in an effort to avoid these 
difficulties [9-13].  In addition, a different approach to computing populations has 
since been proposed, involving the partitioning of the molecular Cartesian space and 
the integration of electron density within these partitions [14-18].  However, these 
integration methods often involve more complex computations. Several other 
approaches to population analysis have also been recently developed [19-21].  

Using the algorithm set forth in section 3, we calculate electronic populations 
for various molecules using projection probabilities. A molecular orbital I V) of a given 
molecule is commonly expressed as a linear combination of the atomic orbitals of its 
constituent atoms: 

n a(i) 

IV) = ~ ~ ai,sli ,  s), 
i=1 s = l  

where the index i ranges over the n atoms in the molecule, and the index s ranges over 
the a(i) atomic orbitals for atom i. From a collection of such LCAO molecular wave 
functions [22], we know the values for the ai. s coefficients and for the overlap matrix 
of the atomic orbitals I i, s). Next, we consolidate the atomic orbitals of a given atom 
into a single orbital, by defining: 

a(i) 

IZ, i} = ~ ai,kli ,  k). 
s=l 

If we now define: 
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a? = (zi l zi>, 

Ii)= !Zi>, 
then we have: 

n 

I ~  = ~, al Ii), 
i=1 

where the [ i) are normalized. We can calculate the coefficients a. of the linear com- 
bination and the overlap matrix of the basis vectors [i) as follow's: 

l a(i) a(i) 

O~i "~ E ~ ai,s tZi,t (i, s I i, t), 
s = l  t = l  

( i l j>- (Zi IZj) 
o~ aj 

a(i) a(j) 
~ ai:Oti, t(i, slj, t) 

s = l  t = l  

l a(i) a(i) I a(j) a(j) ~ Cti,sCti,t(i, sli, t) ~ ~-~ aj,saj,t(j, slj, t) 
s = l  t = l  s = l  t = l  

Given this information, we calculate a probability for each molecular orbital by the 
methods of section 3. Then, to derive an electronic population, we multiply this 
probability by 2, since each occupied molecular orbital contains two electrons. Note 
that the derivation of projected probabilities in section 2 guarantees that these popu- 
lations lie between zero and two, thus avoiding an imperfection of Mdliken popula- 
tions. Table 3 lists the populations calculated by this method for fifteen molecules, 
compared with the Mulliken populations for the same data [23]. The superscripts in 
the chemical formulas are used to differentiate atoms of the same element within a 
given molecule. 

If we interpret the difference between the electronic population of an atom and 
its atomic number as a measure of the atom's effective charge in a given molecule, we 
notice first that the projection operator populations essentially follow the rules dictated 
by electronegativity considerations: partial positive charges generally reside on carbon 
atoms, and partial negative charges generally reside on oxygen, ttitrogen and fluorine 
atoms. We note further that for HCN, NNO, and CH3OH, the projection operator 
populations predict an alternation of partial positive and negative charges along the 
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Table 3 

Electronic  popula t ions  

Molecu le  : A tom Project ion operator  popula t ion  Mul l iken  popula t ion  

I-I20 : H 0.8734 0 .6142 
: O 8.2531 8.7717 

CH 4 : H 1.0256 0.8157 
: C 5.8975 6.7374 

CH3F : H 1.0312 0.8258 
: C 5.7539 6.1395 
: F 9 .1524 9.3831 

CH2F2 : H 1.0409 0.8256 
: C 5.5990 5.6725 
: F 9 .1596 9.3381 

B H  3 : H 1.0784 0.9751 
: B 4.7649 5.0746 

N H  3 : H 0.8965 0 .7114 
: N 7.3104 7.8659 

CO 2 : C 5.7224 5.4133 
: O 8.1388 8.2933 

I-L20 z : H 0.8756 0.5839 
: O 8.1244 8.4161 

H C N  : H 0.8983 0.7168 
• C 6.1678 6.2302 
: N 6.9339 7 .0530 

CF 2 : C 5.8114 5.4942 
: F 9.0943 9 .2529 

N I N 2 0  : N 1 7.0325 6.9687 
: N 2 6.8252 6.7373 
: O 8.1423 8 .2940 

FNO : N 6.7564 65409 

: O 7.9247 8.0708 
: F 9 .3189 9.3883 

1-12CO : H 1.0447 0.8545 
: C 5.8748 5.9848 
: O 8.0358 8.3062 

C H 1 0 1 0 2 H 2  : H 1 1.0377 0.8071 

: H 2 0.8578 0 .5730 

: C 5.8654 5 .6970 
: 01 8.0847 8.3755 
: O 2 8.1543 8.5473 

CH~OH 2 : H 1 1.0316 0.8296 
: H 2 0.8865 0.6173 
: C 5.8537 6.2728 
: O 8.1650 8.6212 
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molecule, whereas the Mulliken populations do not predict such an altemation. This 
alternation of partial charges conforms to the separation of charge guidelines used in 
determining resonance structures: that since partial positive or negative charges repel, 
they naturally seek to maximize the distance between them. This separation of charge 
guidelines is by no means an absolute rule; rather, it is one of several competing factors 
which may determine charge distribution. Hence, the fact that the separation of charge 
rule does not hold for the projection operator populations of FNO can be explained 
by the presence of the very electronegative fluorine atom counteracting the effect of 
the separation of charge rule. 

In addition, in many molecules in which a hydrogen atom is bonded to a carbon 
atom (CH 4, CH3OH, CHOOH, CH3F, CH2F 2, H2CO), the projection operator popula- 
tion for hydrogen is slightly greater than one, whereas the Mulliken population is less 
than one. This surprising prediction of a small partial negative charge on hydrogen 
actually ensures that the alternation of charge rule holds in these molecules for the 
projection operator populations, where it does not hold for the Mulliken populations. 
In addition, this partial negative charge on hydrogen agrees with the findings of recent 
Bader population calculations [24]. Thus, the above results support the application of 
the concept of projection operator probabilities to electronic charge. 

5. Discussion 

We have developed a formalism relying on the theory of projection operators to 
compute probabilities for a linear combination of quantum states. We note that some 
earlier work on population analysis also utilized projection operators, though in a 
distinct manner [25]. The development of this projection operator formalism led to an 
iterative technique for computing probabilities, which easily lent itself to incorporation 
into a computer algorithm. 

We proceeded to apply this theory of quantum probabilities to the problem of 
atomic populations in molecules. The results were often in agreement with the 
Mulliken population analysis, but in several cases differed significantly. Further studies 
of these differences, and comparisons with other recent population analysis procedures, 
are in order. 

Appendix 1 

PROPERTIES OF HYPERPLANE PROJECTION OPERATORS 

The hyperplane projection operator P1...~ is defined as: 

P1...n - I1')(1'1 + 1 2')(2'1 +.. .  + In')(n'l,  

where {11'),12') . . . . .  In')} is an orthonormal basis for the space 
I 1 ), 12) . . . . .  I n), as described in section 2.3. 

spanned by 
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We first need to verify that this operator is well defined; i.e. it is independent 
of the choice of orthonormal basis. Take a second orthonormal basis {I 1 "> . . . . .  In")} 
for the space spanned by J 1 > . . . . .  J n>, and write it in terms of the single-primed 
orthonormal basis: 

[11"> ..... In")] = [11'> .... , In'>]B, (A1.1) 

for some n x n real matrix B. Equivalently, we can write: 

<A,j L< Ij (A1.2) 

Then, if we multiply eq. (AI.1) on the left-hand side by eq. (A1.2), we find that 
I = B~IB, which implies B t = B -1. If we next multiply eq. (A1.2) on the left-hand side 
by eq. (AI.1), we find that: 

I 1"> ( l" l  + . . .  + In")(n"l = [I 1'> . . . . .  In')] B B t [I 1') . . . . .  In'>] t 

= [11'> . . . . .  In '>]BB-I[I  1'> . . . . .  In'>] t 

= I1'><1'1 + . . .  + In'><n'l • 

Next, having verified that P1...~ is well defined, we define its orthogonal 
complement by: 

Q1...n = 1-P1.. .n.  

We can easily see that these operators obey the defining property of projection 
operators (that (P1... n) 2 = / 1 . . . , ,  and (Q1... ~)2 = Q1... n)" Thus, we can manipulate 
these hyperplane projection operators in the same mariner as elementary projection 
operators. 

In addition, we can easily prove the following properties from the definition of 
the hyperplane projection operators: 

(1) If [Z> is in the span of [1 ) . . . . .  [ n>, then P1...,,[ Z> = [Z), and Q1... ~[ Z> = 0. 

(2) If [Z> is orthogonal to [1 > . . . . .  [ n>, then P1...,,[ Z> = 0, and QI . . .  n[ Z> = [Z>. 

From these properties, we can conclude that i f j  e {1 . . . . .  n}, then P~ ...,, Pj = P/. In 
fact, we could easily show the general property that if {i~ . . . . .  //} c_ {1 . . . . .  n}, then 
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So far, the properties stated for hyperplane projection operators are intuitive if 
we c o n s i d e r / 1 . . . ,  as the geometric projection onto the space spanned by I 1 ) . . . . .  I n). 
Next, we derive a non-intuitive but important property of these hyperplane projection 
operators. Given any vector I ~), which may or may not lie in the span of I1 ) . . . . .  I n), 
the following expression holds: 

de tS  1...n¢ (A1.3) 
( O l Q l n l O )  = de tSl . . .n  ' 

where the S matrices are the overlap matrices for the subscripted states. We prove this 
by inducton on n. 

It is easy to verify that eq. (A1.3) holds for n = 1, in which case Q~. . . ,  = Q~ 
and S 1 . . .n is the trivial matrix [1]. 

Now, assume eq. (A1.3) holds for n -  1 and prove it for n. Note that 
if {11') . . . . .  I n - 1 ' ) }  is an orthonormal basis for the space spanned b y l l )  . . . . .  
In - 1), and if we define: 

Q1 . . .n-II  n) Q1 ...n In)  
In') = = 

II a l . . .n -11  n) II (n lOl . . . n -a ln )  1/z '  

then {I 1 ')  . . . . .  In ' )}  is an orthonormal basis for the space spanned by I1) . . . . .  In). 
Thus, we write: 

e l . . ,n  = e l . , . n - 1  + 
Q1...n-l PnQ1...n-1 

(nlQ1...n-1 In) 

Q1...n-lPnQ1...n-1 
Q1...n = Ql.. .n-1 - (nl Ql...n-1 In) 

Therefore, 

(q~lQ1..., I ~#) = (O lQI . . , , - l l  ~ ) -  
(OIQ1. . . , - l ln )  z 

( n l Q 1 . . . , - l l n )  " 
(AI.4) 

Choose an orthonormal basis {ll*) . . . . .  In*), I q~*)} for the space spanned by 
I1 ) . . . . .  In), I~) so that in the coordinate system defined by this basis we have: 
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12) = (a21, a22, O, 0 . . . . .  0), 

In) = a , , z  . . . . .  a n . ,  0 ) ,  

[~O) = (a•l, a¢2 . . . . .  a¢,,, a¢¢). (A1.5) 

In particular, 

[q~) = a¢1[ 1")+a¢2[ 2 " ) + . . .  +acn [n* )+a¢¢ [~* ) .  

Wekn°wtha tQ1  n 1 1 1 " ) = ' " 7 9 1  ,,~-1[ n - l * ) = 0 , s i n c e [ l * )  . . . . .  [ n - l * ) l i e  
in the space spaimed igy [1 ),. , "1 ). Hence, we can further write: 

Q1.. . , -11¢) = a¢,,Q1...,,-lln*)+a¢¢Q1...n-ll¢*). 

Since [q~*) is perpendicular to each of I1) . . . . .  [n - 1), we know that Q1.. .n-11 ¢*) 
= 1¢* ), which leads to the simplification: 

Q1...,-11 ~) = aeanQ1...n-lln*)+ a¢¢1 q~*). 

Now, since In) has coordinate 0 in the 1¢*) direction, (n[ ¢*) = 0, and we have: 

(n IQ1...,-1 [q~) = acn(n IQ1...,-11 n*). (A1.6) 

Referring back to eq. (A1.5), we find the expression: 

In) = an l [ l * ) +  an212*)+. . .  +annln*) .  

Again, since Q1. . . , -111") . . . . .  Q1 . . . , l n  - 1") = 0, we have: 

Q1...n-1 [ n) = annQ1...n-lln*), 

(n [Ql...n-11 n) = ann(n [Q1...,-1 [ n*). 

Since a n must be nonzero in order to preserve the linear independence of the basis 
vectors 11) . . . . .  In), we can rewrite eq. (A1.6) as: 
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(n I Q~...n- 11 4) = a¢'--2-" (n I Q1...n- I I n). 
an n 

The results of  the above section allow us to simplify eq. (A1.4) to: 

(01Q1...nl0) = (OlQ1. . .n -110) -  a~--~ (n lQ1. . . ,_ l  I n). 

However, by induction, we have assumed eq. (A1.3) for n - 1 states, so we can write: 

(~IQ1...nl ¢) = detS 1...n_1,¢ a~n detS 1..., (A1.7) 
det S 1...n- 1 a2,, aEn det S 1...n- 1 

Next, we evaluate the determinants in eq. (A1.7). We show in detail the evaluations 
of det Sl . . .n '  since the same basic method can be used for the other determinants. 

We know from eq. (A1.5) that: 

' 

[11) . . . . .  In)l = [ l l ' )  . . . .  I n ' ) lA* ,  

where A is the square matrix: 

al 1 0 0 . . .  

1 a 2 2  0 . . .  

1 a n 2  a n 3  . . .  

0 

0 

ann 

Multiplying the above vector equations (in the order given) yields: 

$I . . .  n = AIA t = AA t. 

Therefore, 

det Sl . . .  n = det (AA t) = (det A)(det A t) = (det A) 2, 
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by simple rules of  determinants. Since A is a triangular matrix, its determinant is 
simply the product of  its diagonal elements, so that: 

detS t...n,# : a21 a Z22...a~,,a~# . 

In order to calculate det $1... n-  , we need to set up a new coordinate system. 
We already know that {11") . . . . .  In ~ 1 " ) }  is an orthonormal basis for the space 
spanned by 11 ) . . . . .  I n - 1 ). Then, we can expand this basis to a basis for the space 
sparmed by I1 ) . . . . .  I n - 1 ), [ ¢), in which we have 

I1)= (a11,0,0  . . . . .  0), 

12) = (a21, a22,0, 0 . . . . .  0), 

I n -  1 )=  (a . - l ,1  , an- l ,2  . . . . .  a n _ l , n _  1 , 0 ) ,  

[~) = (a¢l,  a¢2 . . . . .  a¢,n-1, b¢o). (A1.8) 

From this representation, we use the same method we used for det S 1 ... ,, to show that: 

detS l...n-1 ,~ = a121 a~2...a~_ 1,n-i b~,.  

Now, if we equate the expressions we obtain for (¢1 ¢) from eq. (A1.5) and eq. (A1.8), 
we find: 

b~¢ = a~n + a~¢. 

Thus, we obtain the expression: 

de tSl . .  1,~ a21a~2 2 (a~n + a ~ ) .  . n -  = . . . a n - l , n - 1  

Now, we can plug these results into eq. (A1.7) as follows: 
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(~IQ1.. . , IO) = 
detS 1...,,-1,¢ a~ detS ~I 1 . . . n  

det S l . . , n  - 1 a~n det  S 1.. . , ,  - 1 

a2 n2 . 2  a~¢) 
11 "22"" "~n - 1 ,n - 1 ( a ~ n  + 

a'~l ,71 a z 
' " 2 2 " "  n - 1  

7.. 
= a~¢ 

_ detS 1....,¢ 

detS 1..., 

a~,t a'~ ~ a.~z . . . a~n 
, n -1  a~,, a121 a~2 a 2 "'" n - l , n - 1  

Thus, we have proven eq. (A1.3) by induction. 
Notice that we have shown: 

d e t S  l...n,#~ 2 

( ~ l Q 1 . . . n l ~ ) -  detSl . . .n  - a ¢ ¢ .  

In order for I 1 ) . . . . .  I n), 1 4) to be linearly independent, we must have a~. ~: 0 (cf. eq. 
(A1.5)). In addition, if we assume that 1 4) is normalized (as we gener~ly do), then 
we must have a2.1 < 1. Thus, if I1 ) . . . . .  I n), I 4) are linearly independent and norma- 
lized, then 0 < (t~l 01. . .hi 4) < 1. 

Appendix 2 

CALCULATING PROBABILITIES FROM PROBABILITY OPERATORS 

This appendix details the essential algebra for calculating a formula for proba- 
bilities given the probability operators derived in sections 2.2 (for the 3-state case) and 
2.3 (for the n-state case). Note first that the 3-state probability operators in eqs. (15) 
and (19) are, as expected, identical to the n-state probability operators in eqs. (28) and 
(32) evaluated at n = 3. Hence, we can work out the algebra for the general n-state 
probabilities, and then insert the requirement that n = 3 to arrive at the specific 3-state 
results. 
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Consider the n-state probability operator formulas from eqs. (28) and (32): 

1 [ QJPjQJ 
(~j ) l  .... = -~ Pj + 1 - (Xj)2 

+ QJ QJPj QJQj-  

1 - (Xj)~... 

1 E + QJPJ(~):QJ 
1 - ( X j ) 2 . . . .  

+ o qJS(:,Y___5o_Jo-J ] 
1 - C x j ) ~ . . . .  ' 

it:j, 

together with the expression from eq. (36): 

/I ?1 n 

= -  ~l ~ m ~ OttOtm(l[(~7)l'"nlm)" (Pi)l...n n )=  t=l =1 

In order to compute the probabilities (P/)I .... , it is sufficient to calculate ( l l  (fi/:)l... ,,I m) 

for all j, l, m < n. First, we calculate (l I(~:)~ ...n m) from the expression in eq. (28): 

Case1" l ,m~j  (QJll)=QJlm)=O). 

(/I (~j) l  ...,, I m ) =  [SjtSj,,, + (IlQ-J--QJPJQJQJIm)]I - (Xj)2..., 

1[ (I]P j_QJPjQJPj!m)] 
= ~ S ~ S ~ m  + 1 - C X j ) ~ . . . .  

= ~ ssts~,, +sjtsj, ,  1-~xj)~..., ] 

1[ 2 
= -~ SjlSim +SjtSjm (1-(Xj)] . . . ,  

1 - ( X j ) 2 . . . ,  

1 [ 1 - (x2) ~.... 
= ~ SjtSjm+SjlSjm I+(Xj)1... , ,  

1[ 2SjtSjm ] 
2 l+(Xj)l...n 

SitS j,,, 

1 + (Xj)l...n 
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Case 2" l=j, mc.j (Qjll)=QJlm)=O). 

1 (11 (~j)l. . . ,  Ira) --- E S j m ,  

Case 3" It:j,  m = j  (Qi[ l )=Qj lm)=O).  

1 (ll(~j)l...,,I m) = ~Sjt. 

Case4: 1, m = j  (Q j l l )=Qj lm)=O) .  

(J] QJPiQJ ]J)7 (ll(13jj)l...nm) = 1 1+ - ~ ~ . ~  j 

1 [ ~l-~xj)~....)2] 

1 [ 1-(Xj)l...n] 
= ~ 1 +  l ¥ ( x j ) ~ . . . .  

,I 2 1 
- 2 1 + (Xj)  1...n 

1 + (Xi)~...,, 

Next, we calculate (l I(/~)~ ...,I m) for i ¢ j from the expression in eq. (32): 

Case 1" l , m ~ j  (QJll)=QJlm)=O). 

(/I (fi/jh...,I m) 

= ~ (/l(/;/) j im)  + (IlQj(~)JQj Ira)+ 
(11Qj QJI~ (~.)iP) QJQj ] m) ] 

J 

= ~ (ll(fii)Jlm)+(llQj(Pi)JQjlm)+SJ ISim (JlQJl;)(~)JPJQJ]J) 
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::[ j 2 (11 (lsi)JIm)+(llQj(4)JQ)[m)+ SjtSjm (Jl(t;i~lj-)(1-(XJ)'"'n)2 

1 [ (ll(~i))m)+(ll(t;i)jlm)-Sjz(jl(4)jlm)-Sj'(ll(l£i)jlj)+- 
= -~ ~ s ~ , s j , . ( j l ( 4 Y l j ) +  s~,sj, .  01 (4Y I j ) ( ] -  (x jh. . . .  

L 1 + ( X j )  1 . . .n 

= (/ l(4)/Im) - . s~  s~,s~,.(jl(4Y i j )  
(Jl (~)/ Im) - -~-- (/I (4f i  I j )+ 1 + (x jh. . . .  

Case 2: l=j ,  m c j  (Qj It) = QJlm) = 0). 

(jl (/3/)) I m) 
(l l( f i i j) l . . .nlm)- 2 

Case 3" l ~ j ,  m =j  (QJll)= Qjlm)=O).  

(~l(~)Jlj) 
(11 (4jh..., I m) - 2 

Case 4" l , m = j  ( Q j l l ) = Q j l m ) = O ) .  

1[ (Jl QJ/~(4 YPjQJ I j ) ]  
(ll(4j)l . . .nlm)= -~ (jl(4¢lj)+ ~7(Xj)2...----- ~ 

1 I (jl(/;i)) [j)(1 - (Xj),...n) 2 
= ~ (Jl(/~i)JlJ) + l_ (X j ) lz . . . .  

1[ ~J'I(~YIj>(1-(Xj),...,,) 1 
= ~ u l (4Y l j>+  i+(x---j)-;.... 

1 [ 2 ( J l ( 4 ) / I j )  

= 2 l + ( x s h . . . .  

~jl(4Ylj) 
1 + ( x j h . . . .  
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From these results, we can easily deduce the specific 3-state results by substi- 
tuting (X/)lz 3 for (X~),...,, and (P~)ik for (Pi)L 

Note that in the 3-state case, the values for (l[(/~i)lz3[m) involve the 2-state 
probability operator (/])ik" A closed-form expression was found for (~)ik in eq. (6): 

( i B i ) i k = ( l _ S ~ ) _ l [ p i + s 2 k p  k 1 + S ~  (P/Pk +PkP/) ]  
2 

from which we can verify the following relations: 

(i I (/3/)ik [ i) l + S  2 , 

(il(fii)ikl k> = Sik 
2 ' 

l + S  2 ' 

(Jl (Pi)ik I i) = 2Sij + Sik (SijSik - Sjk ) 
2(1 + S/2 k ) 

2Sij + Sik Djk 
2(1 + 

(j l  (/;/)ik I k) = Sik (Sij + Sik Sjk ) 
2(1 + S/Zk) ' 

(j[(fii)iklj) = $2 + S2ks~ -S i j S i t S j k  --SijS~kSjk 
1 - S4k 

+ s2, 

1 - $ 4  k 

where D. = S. k S/k - S r. These relations, when substituted into the expressions for 
(/l(P.i)lz~llm) and eq. (36), give the final expression: 

1 3 
(Pi)123---- "~ Z (~:~j)123 , 

j=l  

where 
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(~ t )123  = 
o~ 2 + S~ oq z + $2 k a 2 + 2Sit Sjk O:i O:k 

1 + (Xj)12 3 
+ Sit o:i o~ + Stk a t a k ,  

(Pij)123 

m 

1 +S2k 

( 1 - S  2ij 2 + 1Sij SikD'kJ .t ij .t J ,k + Y S 2 ( S i D i + S ' 2 S j k D j k ) )  ,0~.2+ 

(Si j+  1SikOjk)O~iO~j-F(lgijgik + IS?kgjk)O~jOIk - 

lr z q jr O~i O~k 
so stk (sit oq + stk 

for i ~ j ,  where 

1 
YJ= ( l _ S 2 k ) ( l + ( X j ) l Z 3 )  

References 

[1] N. De Leon and S.P. Neshyba, Chem. Phys. Lett. 151(1988)296. 
[2] For the purpose of this paper, the coefficients oti and the overlaps Sj = (i I J) are assumed to be real. 

The results could easily be extended to complex coefficients and overlaps. 
[3] R.S. Mulliken, J. Chem. Phys. 23(1955)1833. 
[4] C. Hollister and O. Sinan6glu, J. Amer. Chem. Soc. 88(1966)13. 
[5] S.P. Neshyba and N. De Leon, J. Chem. Phys. 99(1989)7772. 
[6] It has been noted that this formula provides a nonzero result for ~ even when [~) is orthogonal to 

I 1), in apparent contradiction with "orthodox" quantum mechanical intuition. This apparent paradox 
can be resolved by noting that if a zero result for PI were derived in agreement with the orthodox 
intuition, we would have to conclude that P2 = 1, even though I ~) is not equal to 12). 

[7] A. Messiah, Quantum Mechanics, Vol. 1 ~orth-Holland, Amsterdam, 1960), p. 262. 
[8] A copy of the program to calculate n-state probabilities is available from the authors upon request. 
[9] P.O. l_/Swdin, Adv. Chem. Phys. 2(1959)207. 
[10] E.R. Davidson, J. Chem. Phys. 46(1967)3320. 
[11] R.E. Christoffersen and K.A. Baker, Chem. Phys. Lett. 8(1971)4. 
[12] I. Mayer, Chem. Phys. Lett. 97(1983)270. 
[13] An additional reference list is available in the paper by K.E. Edgecombe and R.J. Boyd, J. Chem. 

Soc. Faraday Trans. 2, 83(1987)1307. 
[14] P. Politzer and R.R. Harris, J. Amer. Chem. Soc. 92(1970)6451. 



R.S. Manning, N. De Leon, Theory of projected probabilities 357 

[15] R.F.W. Bader, Acc. Chem. Res. 18(1985)9. 
[16] F.W. Biegler-Kttnig, R.F.W. Bader and T.-H. Tang, J. Comp. Chem. 3(1982)317. 
[17] F.L. Hirshfield, Isr. J. Chem. 16(1977)198. 
[18] An additional reference list of integration procedures is available in the paper by J.B. Collins and 

A. Streitwieser, Jr., J. Comp. Chem. 1(1980)81. 
[19] A.E. Reed, R.B. Weinstock and F, Weinhold, L Chem. Phys. 83(1985)735. 
[20] L.E. Chirlian and M.M. Frabcl, J. Comp. Chem. 8(1987)894. 
[21] J. Cioslowski, J. Amer. Chem. Soc. 111(1989)8333. 
[22] L.C. Snyder and H. Basch, Molecular Wave Functions and Properties (Wiley, New York, 1972). 
[23] The Mulliken populations are taken from ref. [11], the source of the molecular orbitals, and were not 

calculated by consolidating atomic orbitals as described above; instead, a population was calculated 
for each atomic orbital, and then these populations were accumulated by atom. 

[24] K.B. Wiberg, R.F.W. Bader and C.D.H. Lai, J. Amer. Chem. Soc. 109(1987)1004. 
[25] See, for example, K.R. Roby, Mol. Phys. 27(1974)81. 


